
Crash-Introduction to
Reinforcement Learning

GIUSEPPE BONACCORSO

Warning!

This is only a crash
introduction. This
implies:

◦ Lack of mathematical
rigor

◦ Limited topic discussion

Agenda
o Constitutive elements

o Value iteration

o Time-Difference algorithms

o Actor-Critic

o SARSA

o Q-Learning

o Policy Gradient

Agent
The agent is the entity that acts into an environment to maximize its total
reward and achieve its objectives.

An agent:
• Can repeat the same experience an indefinite number of times

• Operates in a time-sequence 𝑡1, 𝑡2, … ∈ 𝑇

• Select an action from a set 𝑎𝑡 ∈ 𝐴

• Expect a reward 𝑟𝑡+1 because of the action 𝑎𝑡
• Transition from a state to another 𝑠𝑡 → 𝑠𝑡+1 ∈ 𝑆

Environment
The environment is the component where the agent can perform actions, receive
feedbacks, optimize its policy, and reach its goals.

It can be either deterministic:

𝑠𝑡+1, 𝑟𝑡+1 = 𝑓 𝑠𝑡, 𝑎𝑡 𝑤ℎ𝑒𝑟𝑒 𝑎𝑡 ∈ 𝐴 𝑎𝑛𝑑 𝑠𝑡 , 𝑠𝑡+1 ∈ 𝑆

Or stochastic:

𝑇 𝑠𝑡 , 𝑠𝑡+1
𝑖 , 𝑎𝑡 = 𝑝(𝑠𝑡, 𝑠𝑡+1

1 , 𝑎𝑡 , … , 𝑝 𝑠𝑡, 𝑠𝑡+1
𝑖 , 𝑎𝑡 , …)

Where 𝑇 𝑠𝑡 , 𝑠𝑡+1
𝑖 , 𝑎𝑡 is the transition probability from 𝑠𝑡 𝑡𝑜 𝑠𝑡+1

𝑖 if the action 𝑎𝑡 is
chosen

The interaction between Agent and
Environment

Markov Decision Process
Given a stochastic environment, we can consider the sequence:

𝑠1 → 𝑎1 → 𝑠2, 𝑟2 → . . .→ 𝑠𝑛, 𝑟𝑛 → ⋯

The transition between stated is governed by 𝑇 𝑠𝑡 , 𝑠𝑡+1
𝑖 , 𝑎𝑡 which is very similar to a

Markov Chain.

In this case, the presence of the action transforms the evolution of the process into a
decision one.

Remember that every action is selected after observing the result of the previous
transition and the reward.

Rewards
Immediate rewards 𝑟𝑡+1 are helpful only considering the shortest horizon

In order to extend the horizon, it’s helpful to include a discount factor 𝛾 ∈ (0,1):

𝑅𝑡 =෍

𝑖=0

∞

𝛾𝑖𝑟𝑖+𝑡+1 = 𝑟𝑡+1 + 𝛾𝑟𝑡+1 +⋯+ 𝛾𝑘𝑟𝑘+𝑡+1 +⋯

𝑅𝑡 denotes the discounted reward with an infinite horizon.

If |𝑟𝑡+1+𝑖| ≤ 𝑟𝑚𝑎𝑥 :

𝑅𝑡 = σ𝑖=0
∞ 𝛾𝑖 𝑟𝑖+𝑡+1 ≤ σ𝑖=0

∞ 𝛾𝑖 𝑟𝑖+𝑡+1 ≤ 𝑟𝑚𝑎𝑥 σ𝑖=0
∞ 𝛾𝑖 =

𝑟𝑚𝑎𝑥

1−𝛾

Policy
A policy encodes the behavior of the agent and provides the best action to
perform in each state 𝑠𝑡 ∈ 𝑆.

It can be either deterministic:
𝑎𝑡+1 = 𝜋(𝑠𝑡)

Or stochastic:
𝜋 𝑠𝑡 = 𝑝 𝑎𝑡+1 = 𝑎 1 , … , 𝑝 𝑎𝑡+1 = 𝑎 𝑛 , …

For our purposes, a policy represents an agent and vice versa. To goal of a RL
algorithm is to find an optimal policy for a given environment.

Exploitation vs. Exploration
A stochastic policy allows to:

• Exploit the learned policy

• Explore the environment

If the policy is optimized too quickly, the agent loses the ability to explore the
environment and discover better alternatives.

To solve this problem it’s possible to employ an 𝝐-greedy policy:

𝜋 𝑠𝑡 = ൜
argmax𝜋 𝑠𝑡 𝑤𝑖𝑡ℎ 𝑝 = 1 − 𝜖
𝑠𝑡~𝜋 𝑤𝑖𝑡ℎ 𝑝 = 𝜖

𝑎𝑛𝑑 lim
𝑡→∞

𝜖𝑡 = 0

Value of a state
A state 𝑠𝑡 can be associated with a value:

𝑉 𝑠𝑡; 𝜋 = 𝐸𝜋 𝑅𝑡; 𝑠𝑡 = 𝐸𝜋 ෍

𝑖=0

∞

𝛾𝑖 𝑟𝑖+𝑡+1; 𝑠𝑡

Intuitively: finding the value of each 𝑠𝑡 under 𝜋 allows to optimize the policy

More formally: It’s possible to turn the expression into a Bellman equation and
use a dynamic programming approach to iteratively optimize it (proof is omitted)

Value iteration
Given a generic stochastic environment characterized by 𝑇(𝑠𝑡 , 𝑠𝑘; 𝑎𝑘), a simple
algorithm is based on the following update rule:

𝑉 𝑖+1 𝑠𝑡 = max
𝑎𝑡

෍

𝑠𝑘

𝑇(𝑠𝑡 , 𝑠𝑘; 𝑎𝑘) 𝐸 𝑟𝑡+1; 𝑠𝑘 , 𝑎𝑘 + 𝛾𝑉 𝑖 (𝑠𝑘)

It’s possible to prove that 𝑉(∞) → 𝑉(𝑜𝑝𝑡) (proof is omitted)

The main drawback of value iteration is the absence of the action in the value
function.

Q-function
The value of a state 𝑠𝑡 has the disadvantage not to include the action 𝑎𝑡 that triggered
the transitions. The problem is solved by defining another proxy function:

𝑄 𝑠𝑡 , 𝑎𝑡; 𝜋 = 𝐸𝜋 𝑅𝑡; 𝑠𝑡, 𝑎𝑡 = 𝐸𝜋 ෍

𝑖=0

∞

𝛾𝑖𝑟𝑖+𝑡+1; 𝑠𝑡 , 𝑎𝑡

Also in this case, we can turn 𝑄 𝑠𝑡 , 𝑎𝑡; 𝜋 into a Bellman equation:

𝑄 𝑠𝑡 , 𝑎𝑡; 𝜋 =෍

𝑠𝑘

𝑇(𝑠𝑡, 𝑠𝑘; 𝑎𝑡) 𝐸 𝑟𝑡+1; 𝑠𝑘 , 𝑎𝑡 + 𝛾𝑉(𝑠𝑘; 𝜋)

Policy from Q-function
Given a Q-function, the update step can be obtained as:

𝜋 𝑘+1 𝑠𝑡 = argmax
𝑎𝑡

𝑄 𝑠𝑡 , 𝑎𝑡; 𝜋
𝑘

Clearly, to optimize the Q-function is necessary to update the …+ 𝛾𝑉(𝑠𝑘; 𝜋)
term representing the values of the states.

When 𝑘 → ∞, 𝜋 𝑠𝑡 will converge to a fixed point (Policy improvement theorem
– proof is omitted) representing an optimal policy.

Time Difference (TD) Algorithm
Another simple but effective algorithm is based on the update of the values in a
way proportional to their time difference:

𝑉 𝑡+1 𝑠𝑖 = 𝑉 𝑡 𝑠𝑖 + 𝛼 𝑟𝑖𝑗 + 𝛾𝑉 𝑡 𝑠𝑗 − 𝑉 𝑡 (𝑠𝑖)

The constant 𝛼 ∈ (0,1) is a pseudo-learning rate.

This version is called TD(0) as it considers only the immediate reward 𝑟𝑖𝑗.

A more generic version is called TD(λ) and it’s based on more time steps:

𝑟𝑖𝑗 + 𝛾𝑉 𝑡 𝑠𝑗 → 𝑅𝑡
𝑘 = 𝑟𝑡+1 + 𝛾2𝑟𝑡+2 +⋯+ 𝛾𝑘−1𝑟𝑘−1 + 𝛾𝑘𝑉 𝑡 (𝑠𝑡+𝑘)

Actor-Critic
It’s possible to improve the effectiveness of a TD algorithm using a particular
approach called Actor-Critic:

Defining the TD error as:

𝑇𝐷𝑒𝑟𝑟𝑜𝑟 = 𝑟𝑖𝑗 + 𝛾𝑉 𝑠𝑗 − 𝑉(𝑠𝑖)

The policy (agent) is split into:
• An Actor that selects and performs an action

• A Critic that evaluates the estimation of the value

Actor-Critic (Dynamics)
Consider a matrix P, called Policy Importance, where each entry 𝑝𝑖(𝑠, 𝑎) represents the
preference for an action 𝑎 in every state 𝑠.

Let’s define an 𝝐-greedy soft policy:

𝜋 𝑠, 𝑎 =
𝑒𝑝𝑖(𝑠,𝑎)

σ𝑎𝑘 𝑒
𝑝𝑖(𝑠,𝑎𝑘)

=
𝑒
−max

𝑎
𝑝𝑖 𝑠,𝑎 𝑒𝑝𝑖(𝑠,𝑎)

𝑒
−max

𝑎
𝑝𝑖 𝑠,𝑎 σ𝑎𝑘 𝑒

𝑝𝑖(𝑠,𝑎𝑘)
=

𝑒
𝑝𝑖 𝑠,𝑎 −max

𝑎
𝑝𝑖(𝑠,𝑎)

σ𝑎𝑘 𝑒
𝑝𝑖 𝑠,𝑎𝑘 −max

𝑎
𝑝𝑖(𝑠,𝑎)

Actor-Critic (Dynamics)
Let’s now reconsider a transition 𝑠𝑖 → (𝑠𝑗 , 𝑟𝑖𝑗) the TD error:

𝑇𝐷𝑒𝑟𝑟𝑜𝑟 = 𝑟𝑖𝑗 + 𝛾𝑉 𝑠𝑗 − 𝑉(𝑠𝑖)

If 𝑉 𝑠𝑖 < 𝑟𝑖𝑗 + 𝛾𝑉(𝑠𝑗) the Critic considers the action as positive and vice versa.

The role of the Critic is immediately reflected in the Policy Importance:

𝑝𝑖 𝑠𝑖 , 𝑎 = 𝑝𝑖 𝑠𝑖 , 𝑎 + 𝜌𝑇𝐷𝑒𝑟𝑟𝑜𝑟

Where 𝜌 is weight parameter. The Actor selects an action as 𝜋 𝑠 = argmax
𝑎

𝜋(𝑠, 𝑎)

SARSA Algorithm
SARSA is a natural extension of TD(0) for the estimation of the Q-function. Given
a transition 𝑠𝑡 → 𝑎𝑡 → 𝑟𝑡+1 → 𝑠𝑡+1 → 𝑎𝑡+1, we have:

𝑄 𝑠𝑡 , 𝑎𝑡; 𝜋 = 𝑄 𝑠𝑡 , 𝑎𝑡; 𝜋 + 𝛼 𝑟𝑡+1 + 𝛾𝑄 𝑠𝑡+1, 𝑎𝑡+1; 𝜋 − 𝑄 𝑠𝑡 , 𝑎𝑡; 𝜋

SARSA converges to the optimal policy with p = 1, 𝑝 lim
k→∞

𝜋 𝑘 𝑠 = 𝜋𝑜𝑝𝑡(𝑠) = 1 ∀ 𝑠 ∈ 𝑆

if the following conditions are met:

• The learning rate 𝛼 ∈ (0,1) with the constraints σ𝛼 = ∞, σ𝛼2 < ∞

• The variance of the rewards must be finite

Q-Learning
Q-Learning can be considered as an extension/alternative to SARSA. Given the
transition 𝑠𝑡 → 𝑎𝑡 → 𝑟𝑡+1 → 𝑠𝑡+1, we have:

𝑄 𝑠𝑡 , 𝑎𝑡; 𝜋 = 𝑄 𝑠𝑡 , 𝑎𝑡; 𝜋 + 𝛼(𝑟𝑡 + 𝛾max
𝑎

𝑄 𝑠𝑡+1, 𝑎; 𝜋 − 𝑄(𝑠𝑡 , 𝑎𝑡; 𝜋))

As you see, in this case, we are considering the term max
𝑎

𝑄 𝑠𝑡+1, 𝑎; 𝜋 , which is

the maximum Q obtainable with a potential action (a.k.a. Next Best Action).

Q-Learning converges under the same condition of SARSA

Policy Gradient (Structure)
Policy Gradient is a direct policy search algorithm. We assume to have:

• A parametrized policy 𝜋(𝑠, ҧ𝜃)

• N sequences of states 𝑆𝑘 = (𝑠1, 𝑠2, … , 𝑠𝑘)

• A transition probability 𝑝 𝑠𝑖 → 𝑠𝑗 𝑎𝑘 ∀ 𝑠𝑖 , 𝑠𝑗 ∈ 𝑆 𝑎𝑛𝑑 𝑎𝑘 𝑖𝑛 𝐴

We can define the conditional probability as 𝑝 𝑆𝑘 𝜋 :

𝑝 𝑆𝑘 𝜋 = 𝑝(𝑠1)ෑ

𝑖

𝑝 𝑠𝑖 → 𝑠𝑖+1 𝑎𝑖 𝜋(𝑎𝑖|𝑠𝑖; ҧ𝜃)

Policy Gradient (Objective)
We can define a cost function as:

𝐿 ҧ𝜃 = න𝑝 𝑆𝑡 𝜋 𝑅 𝑆𝑡 𝑑𝑆𝑡

An agent that maximizes 𝐿 ҧ𝜃 will find an optimal policy. After discretizing it, we get:

𝐿 ҧ𝜃 ≈
1

𝑁
෍𝑝 𝑆𝑡 𝜋 𝑅 𝑆𝑡

At this point, we can compute the gradient:

∇𝐿 ҧ𝜃 ≈
1

𝑁
෍∇𝑝 𝑆𝑡 𝜋 𝑅 𝑆𝑡

Policy Gradient (Optimization)
We can simplify the gradient:

∇𝐿 ҧ𝜃 ≈
1

𝑁
෍∇𝑝 𝑆𝑡 𝜋 𝑅 𝑆𝑡

Consider that:
𝑑

𝑑𝑥
𝑓 𝑥 = 𝑓 𝑥

1

𝑓 𝑥

𝑑

𝑑𝑥
𝑓 𝑥 = 𝑓 𝑥

𝑑

𝑑𝑥
log 𝑓(𝑥)

So, by applying this transformation, we get:

∇𝐿 ҧ𝜃 ≈
1

𝑁
෍ 𝑝 𝑆𝑡 𝜋 ∇ log 𝑝 𝑆𝑡 𝜋 𝑅 𝑆𝑡 =

1

𝑁
෍ 𝑝 𝑆𝑡 𝜋 ෍

𝑖

∇ log 𝜋 𝑎𝑖 𝑠𝑖; ҧ𝜃 𝑅 𝑆𝑡

Thank you!

Sorry for the boredom!

References

◦ Sutton R. S., Barto A. G., Reinforcement Learning, The MIT Press, 1998

◦ R. A. Howard , Dynamic Programming and Markov Process, The MIT Press, 1960

◦ Dayan P., Abbott L. F., Theoretical Neuroscience, The MIT Press, 2005

◦ Bonaccorso G., Mastering Machine Learning Algorithms (2nd ed.), Packt, 2020

